MATH5011 Exercise 1

(1) Let $\left\{A_{k}\right\}_{k=1}^{\infty}$ be a sequence of measurable sets in (X, \mathcal{M}). Let

$$
A=\left\{x \in X: x \in A_{k} \text { for infinitely many } k\right\}
$$

and

$$
B=\left\{x \in X: x \in A_{k} \text { for all except finitely many } k\right\} .
$$

Show that A and B are measurable.
(2) Let $\Psi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that $\Psi(f, g)$ are measurable for any measurable functions f, g. This result contains Proposition 1.3 as a special case.
(3) Show that $f: X \rightarrow \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}([a, b])$ is measurable for all $a, b \in \overline{\mathbb{R}}$.
(4) Let $f: X \times[a, b] \rightarrow \mathbb{R}$ satisfy (a) for each $x, y \mapsto f(x, y)$ is Riemann integrable, and (b) for each $y, x \mapsto f(x, y)$ is measurable with respect to some σ-algebra \mathcal{M} on X. Show that the function

$$
F(x)=\int_{a}^{b} f(x, y) d y
$$

is measurable with respect to \mathcal{M}.
(5) Let $f, g, f_{k}, k \geq 1$, be measurable functions from X to $\overline{\mathbb{R}}$.

1. Show that $\{x: f(x)<g(x)\}$ and $\{x: f(x)=g(x)\}$ are measurable sets.
2. Show that $\left\{x: \lim _{k \rightarrow \infty} f_{k}(x)\right.$ exists and is finite $\}$ is measurable.
(6) There are two conditions (i) and (ii) in the definition of a measure μ on (X, \mathcal{M}). Show that (i) can be replaced by the "nontriviality condition": There exists some $E \in \mathcal{M}$ with $\mu(E)<\infty$.
(7) Let $\left\{A_{k}\right\}$ be measurable and $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$ and

$$
A=\left\{x \in X: x \in A_{k} \text { for infinitely many } k\right\} .
$$

From (1) we know that A is measurable. Show that $\mu(A)=0$.
(8) Let B be the set defined in (1). Let μ be a measure on (X, \mathcal{M}). Show that

$$
\mu(B) \leq \liminf _{k \rightarrow \infty} \mu\left(A_{k}\right)
$$

(9) Here we review Riemann integral. This is an optional exercise. Let f be a bounded function defined on $[a, b], a, b \in \mathbb{R}$. Given any partition $P=\{a=$ $\left.x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ on $[a, b]$ and tags $z_{j} \in\left[x_{j}, x_{j+1}\right]$, there corresponds a Riemann sum of f given by $R(f, P, \mathbf{z})=\sum_{j=0}^{n-1} f\left(z_{j}\right)\left(x_{j+1}-x_{j}\right)$. The function f is called Riemann integrable with integral L if for every $\varepsilon>0$ there exists some δ such that

$$
|R(f, P, \mathbf{z})-L|<\varepsilon
$$

whenever $\|P\|<\delta$ and \mathbf{z} is any tag on P. (Here $\|P\|=\max _{j=0}^{n-1}\left|x_{j+1}-x_{j}\right|$ is the length of the partition.) Show that
(a) For any partition P, define its Darboux upper and lower sums by

$$
\bar{R}(f, P)=\sum_{j} \sup \left\{f(x): x \in\left[x_{j}, x_{j+1}\right]\right\}\left(x_{j+1}-x_{j}\right)
$$

and

$$
\underline{R}(f, P)=\sum_{j} \inf \left\{f(x): x \in\left[x_{j}, x_{j+1}\right]\right\}\left(x_{j+1}-x_{j}\right)
$$

respectively. Show that for any sequence of partitions $\left\{P_{n}\right\}$ satisfying $\left\|P_{n}\right\| \rightarrow$ 0 as $n \rightarrow \infty, \lim _{n \rightarrow \infty} \bar{R}\left(f, P_{n}\right)$ and $\lim _{n \rightarrow \infty} \underline{R}\left(f, P_{n}\right)$ exist.
(b) $\left\{P_{n}\right\}$ as above. Show that f is Riemann integrable if and only if

$$
\lim _{n \rightarrow \infty} \bar{R}\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} \underline{R}\left(f, P_{n}\right)=L
$$

(c) A set E in $[a, b]$ is called of measure zero if for every $\varepsilon>0$, there exists a countable subintervals J_{n} satisfying $\sum_{n}\left|J_{n}\right|<\varepsilon$ such that $E \subset \bigcup_{n} J_{n}$. Prove Lebsegue's theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of measure zero. Google for help if necessary.

